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Bodies moving in a melting solid medium or one body sliding over the surface of another, with the 

formation of a melt layer in the contact zone, are considered in a two-dimensional setting. The asymptotic 

method proposed in [l] for the case of moving plates is extended to deal with quite general shapes. Among 

the bodies considered are wedges and transversely moving circular cylinders. A detailed study is made of a 

beam sliding over a plane surface, with the beam material melting in the contact zone. 

CONSIDER a solid medium impinging at a constant velocity V on a fixed contour (Fig. 1); the 
temperature of the medium far upstream from the contour is T, ; a melt or vapour layer forms near 
the contour. We will introduce the coordinates usually employed in thin-layer theory: x along the 
contour and y along the normal to it; the origin 0 may be placed at an arbitrary point of the contour. 
The angle between an element of the contour and the direction of the velocity of the solid medium is 
denoted by y(x) and the y coordinate of the solid-liquid interface by y*(x). We will assume that the 
points of the contour may move along it at a velocity U(X). 

The flow and temperature distribution in the melt are assumed to satisfy the usual equations of 
thin-layer theory: 

where u and v are the velocity components in the x and y directions, p is the pressure and T is the 
temperature. The physical parameters of the melt-its density p, specific heat c and the coefficient of 
viscosity and thermal conductivity t.t and A are assumed to be constant. The corresponding 
quantities pS, c, and A, for the solid medium, as well as the specific latent heat /z~ absorbed when it 
melts and its melting point T,,, , are also assumed to be constants. 

FIG. 1. 
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In accordance with the equation of continuity, we introduce the stream function +, so that 

u = a*lay, v = -a+lax. 
The boundary conditions for equations (1) are as follows: 

y-o: g==o, ag/ay-u(z)) T-T,(s) (2) 

y=y+: u-V cos y- (V sin y+V)dy*/dz, T-T,, (3) 
haTlay dx-ph,dvp=L,aT,/@/ dx 

(the temperature T,,, need not be given; it can be determined from other conditions, such as 
aT/ayI, = 0). 

The last condition of (3) is formulated in the thin-layer approximation; everything else is valid in 
the exact version of the problem. 

The expression A,aT,/ay in the equation of heat balance at the melt surface is determined by 
finding the temperature distribution in the solid medium, that is, by solving the equation 

(4) 

with boundary conditions 

y=y*‘: TIT,,,, y-coo i T-T, (5) 

The need to determine the previously unknown boundary y = y*(x) links this problem with the 
problem of flow in a melt layer. 

Foljowing an idea in [l], we replace x and y by new independent variables x and 4 = y/y*, 
expressing the stream function as $= y*(p(L_, X) and replacing dpldx by a new quantity k(x) defined 
by the equation 

-p-l (dp/dx)y*z-k(s) (6) 

When the stream function JI is used, the second equation of system (1) will be satisfied, but the 
momentum and temperature equations become, in the new variables 

I 

The primes on cp and T denote partial derivatives with respect to 5; y’* = dy*ldx. 
The boundary conditions (2) and (3) for the flow in the layer are transformed as follows: 

c-0 : cp-0, @-U(z), T==Tw 

t-i : cp’(l+y’@)-V co8 y+(N-4) Vsin ~y’*+NV COB ly’*‘, T-T,, 

(7) 

&(y+qt)=p,V(sin ydz+cos ydy?) 

kT’bz+phty+d ( I*@ -h,y* (aTa/&) dj @b) 

The condition for q’(l) is obtained by combining the first and third conditions of (3). 
To apply our asymptotic method, we will assume that y* and its derivative y’* are small. 

Conditions ensuring that y* is indeed small compared with the characteristic longitudinal scale of 
the liquid layer will be determined as the problem is being solved. 

We will represent cp, T, k and y* in the form of infinite sums: 

(p=(po+(p,+(pl-t-’ . . . , T==T,+T,+T,+ . . . 

k-k,+k,+k,+ . . ., y*==y,+y~+d3+ f * - 
(9) 
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where the subscript of each term indicates its order of smallness. These representations are not 
unique: each term of the sum may also include part of a higher-order expression. Substituting (9) 
into Eqs (7) and the boundary conditions (8), adding terms of the same order and equating the sums 
to zero, we obtain systems of equations for the successive terms in (9). We will present these systems 
for the quantities written out explicitly in (9). 

By equations (7), 

cpO” + k,, - 0, AT,,” + ppo”* = 0 
Qlm+kl=O, hT,“+2pQ;QP1”=0 

h+l 
(10) 

‘v (Qs”’ + M = Y,~ Q,,’ T - 

hTz” + P (‘PI”* + ~QO”Q~“) = PC 
aT0 ‘PO’ x - 

T c “Fo - O ax - y,y,'cpoTo' I 

The boundary conditions (8) give 

t-0: Qo=& QO’=U, To-T, 

(Pi’& Q,’ =0, T,AO, ~2-0, q+O, Tz=O 

c=l: Qo’=V cos 7, To-T,,,, cp,‘=(iV-1) V sin yy,‘, T,=O 

Qs’= (NV cos pipa’) y,“+ (N-l)sin ryZ’, T,=O 

(cp,.- NV cos y) y,’ + 2 y, = NV sin y 

(11) 

(12) 

(Qo - a’po 
NVeos~)~2’+~~2=- ( 

8% 
RY,‘+ 62 Y, ) 

?. 

(Qo - NVcos~)y,‘+ %yl= - & (Q,Y, + QSY,) 

8T 

ATI’ + p,W [1l2 ainy + (yiys’ =k ys~r’)eos~l =&Y, ay 

aT 
AT,’ + p,Q [Y, sin Y + (YIY,’ + Y,Y,’ + Y,YJ eos VI = &Y, $ 

Since the balance equations at the solid-liquid interface [the third and fourth equations of (8b) 
with 5 = l] determine the order of y* and its actual magnitude, we must retain the principal parts of 
all the terms in the principal approximations of Eqs (12) that determine y. 

It should be noted that the successive terms in expressions (9) for cp and T are polynomials of 
increasing order in 5, with coefficients depending on X. Convective transfer is manifested in these 
expressions only in terms of second and higher orders. 

By the first equation of (lo), cpo is a polynomial of the third degree in 5; determining its 
coefficients by using the first two conditions of (11) and the first condition of (12), we find 

By the second equation of (lo), the temperature To is linear in 5 if viscous dissipation is ignored 
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and a fourth-degree polynomial otherwise. Determining the coefficients by using the third condition 
of (11) and the second condition of (12), we find 

I 

1 a0 =t go” (0, x);= V dos y - iJ + +) 

The two conditions of (12) specifying the values of cpo and To at < = 1, which represent conditions 
of mass balance and heat flux balance at the solid-liquid interface, are now treated by substituting 
‘po(l, x), &pol~x 1 5=1 and To’(l, x) into them from (13) and (14); this gives a system of two ordinary 
first-order differential equations for y* (x)and kO(x): 

I’ -_- (1 -2ff)Vcosy + $- 
= 2.W sin y 

-AT,‘(i)=A(T,- Tm,+~j++&+~)= 

l3T 
= p,Vh,y* (sin y + eos yy’+) - h-,y* ity (15) 

To determine the general solution of these equations, taking account of (B), we need three 
boundary conditions for y*(x), k (x ) and p (x ). 

Note that if viscous dissipation in the layer is ignored, the term including k in the heat flux balance 
equation drops out and y*(x) can be determined from that equation, independently of the mass 
balance equation. The latter will then be used to determine ko(x). 

We will first consider the problem of melt flow in the layer at a straight portion of the contour. In 
that case y = const and the initial mass balance equation (8) at the melt surface, & = 1, has a closed 
integral (henceforth we shall omit the subscript 0 denoting the principal approximation): 

py*cp=p,vl (s-tO)sin r+(y*-yoo)cos yl (16) 

The constant of inte~ation is so chosen that the discharge of melt in the cross-section at x0 with 
the appropriate value of y* = yo* is zero (if yo* # 0 the melt will flow away from the cross-section 
x = x0 in both directions). 

Substituting ~(1) into (16), we get an integral of system (15): 

k=6(2N-i) V cat5 y-W+l2NV[ (r-s,)sin y-y,* cos y)ly* 

connecting the functions k(x) and y*(x). 

(17) 

We shall ignore the heat flux into the solid medium in the heat-balance equation (IS). (This flux 
will vanish if the medium is heated up to its melting point, that is, 7’, = T, ; approximate allowance 
may be made for the heat flux by replacing ?zf by an “effective” latent heat hf+ c,(T, - T,).) Then 
the equation, with (Y replaced by the appropriate expression and the integral (17) suitably inserted, 
will determine y*(x): 

-hT’(1)==h(T,,.- T,,,) +p 
6 

vcosy -a) -+ 
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FIG. 2. 

Let us assume that dissipation in the layer may be ignored. As already stated, 
equation (18) becomes independent of (17), and if y = const it is easily integrated. 

If y = r/2 the equation degenerates into a finite relation 

!I* -= h(Tw- T,,,) 

pAI’& 

this means that 

(19) 

and we need only two boundary conditions to determine the constants of integration of systems 
(17), (18) and (6), rather than three as in the general case. 

The y = 0, assuming that the wall temperature T,,, is constant, we obtain (the generalization to the 
case T, # const is obvious) 

y*-J = y:‘+ 2 A VW - T”J 
Ohi 

(5 - G) 

If y f 0,1r/2, the solution for T, = const is expressed by the formulas 

y*= h. VW - Ttn) 
p,Vb sin y = ‘a* = const 

X-X 0- --ctgy ( y*-yo* + y_+ In I ym~-y; 
Ye0 -Yo I) 

Figure 2 shows plots of this solution, apart from a translation in the x direction, in variables 
5 = xtgy/ym*, n = y*/y,*. As x increases the layer thickness increases as long as yO* <y,* and 
decreases when ya* >yW*; at ya* = y, * it remains constant. In the first case the initial thickness of 
the layer may, in particular, be zero. 

Let us study the behaviour of the other flow parameters in the layer, between the limits x = 0 and 
x = L, for the simplest case: y* = const. To simplify the formulas, we take y = 1r/2 (the generaliza- 
tion to the case r#O, 1r/2 presents no difficulties). Then the integral (17) becomes 

k=-6U+l2NV(x--x&y* 

Integrating (6) with respect to x and taking the pressure at x = L as the initial pressure level, we 
obtain 

Y l 2 

TP 
= 6U+12NV~)(x-L)-T 

( 
6NV 

Y ( 
x2 - 45’) (22) 

Integratingp again with respect to X, from 0 to L, we find an expression for the total normal force 
acting on the layer over the interval (0, L): 
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Here p is a parameter representing the influence of the velocity iJ of the surface. 
As to the distribution of frictional stress on the plate, I~, and at the melting surface of the solid 

medium, I*, we obtain 

Hence the total forces of friction on the parts of the plate and melt surface from x = 0 to x = L, 

this implies formulas 

x WL w-- 
Yf [ 

lrufi -4+--2+)], x*=_tiT.I-2-t $i--29)] 

Let us consider the application of the formulas developed above to a few specific problems. 
Consider a beam of constant finite width L, pressed by a normally applied force Y onto a plane 

moving with velocity U (Fig. 3a, b). On contact with the plane the material of the beam melts and 
the liquid melt is squeezed out from under the beam, the latter thus approaching the plane at a rate 
V. 

This problem has various applications and has frequently been considered in the literature. The case U = 0 
was studied in [2]; the authors use the same equation of motion as we have here, but write the beat balance 
equation for the layer in integral form, with the temperature distribution represented by a quadratic 
polynomial. The method of integral relations with quadratic polynomials for the velocity and the temperature 
was used in [3] to examine the general case lJ = const>O and ~30. Finally, the problem was recently 
considered with the same equations as in this paper [4]. 

To apply the above formulas to this problem, we determine x0, that is, the position of the 
cross-section at which the discharge of melt is zero. This parameter is determined by the condition 
that the pressure in the section x = 0 is the same as in x = L, i.e. zero. Putting x = 0 andp = 0 in the 
expression (22) for p, we obtain xaZ4 = i/2(1 - p). Clearly, x0/L is the fraction Q of the melt 
squeezed out from beneath the beam toward the direction of the moving beam. If Q = 0 all the melt 
extruded to the left returns to beneath the beam; if Q > 0 there should be a discharge of melt in front 
of the beam; while the solution for Q CO corresponds to melt already present on the plate flowing 
into the space under the beam. Substituting the resulting expression for x0 into the formulas for p, T,,, 
and 7*, we obtain 

6pNV 
P=- Y*s SW--s) 

% 
iru 

=* 3 %--= NV 
Y uy* - 37j$-NV +i) 

Hence it follows that the pressure distribution is in this case symmetrical about the middle line of 
the beam and independent of the velocity LT. For the total forces Y, X, and X* , we have 

y _ pNVL” - 
p *, x*=_x,,A!!g 

Y 
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Note that the friction force X* acting between the beam and the surface in the presence of the 
melt layer is the same as the similar force for an ordinary layer of lubricant of the same thickness y* 
with Couette flow. 

Substituting y* = X( 7’, = T,,, )/(p, Vh~) , into these formulas, we obtain 

Y=NpV 
[ 

P,V’L/h# 3 
h(Tw_TT,) ) x3=-xw= I PP,u~~3 

h (cl7 T,) 

The first of these formulas establishes the relation between the force Y pressing down the beam 
and the rate of melting V: the rate of melting is proportional to Y1’4. The formula for D yields a 

relationship between this quantity and the pressing force Y: 

Q =$-( ,,p”_“t, 
W m 

) )“(!g 

If it is assumed that there is initially no liquid layer on the plate, then necessarily Q 20. The 
minimum value of the pressing force for which Q = 0 and all the melted material is pushed out from 
under the beam by the moving plate is 

Y min = 4Pu 
NJ& 

h Vw - TnJ 

As Y increases above this value, an increasingly larger part of the melt is forced out from under 
the beam in the direction of motion of the plate; if Y increases without limit this part tends to a half 
of the total discharge of melt. 

It should further be noted that the absolute values of the forces X,,, and X* are indeed equal only 
in the principal approximation. In reality, taking into account that p(0) = p (I,), the sum of these 
two forces must equal the difference between the projections onto the x direction of the momenta of 
the liquid in the layer at x = L and x = 0; this difference is readily seen to be pS VLU. This quantity 
determines the order of accuracy of the expressions for X, and X*. 

We can also write down an averaged coefficient of friction between the beam and the moving 
surface in the presence of a melt layer: 

pu ‘14 
Pf “; y cm= - 

( )( 
pULhf =/a 

h KD - cl) ) 

Let us suppose now that the beam, while being pressed onto the moving surface, is in contact on 
the left with a fixed wall, which is impermeable to the melt (Fig. 3b). Then instead of p (0) = 0 we 
must assume that x0 = 0. The required exact condition u = (p’(t) at x = 0, O-=Z 5~ 1, is of course 
satisfied only on the average over the layer thickness. The general formulas yield, after putting 
x0 = 0, 

p 
C (23) 

Z,= pNVL 

Q +a 

and accordingly 

1 =@g(4 -338) 

X .=$54B+3), x*2!!!$$_zp +,3) (24) 

Figure 4 shows a plot of the pressure distribution in dimensionless variables 
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for several values of 6. As p is increased, i.e. the velocity U increases, the pressure under the beam 
drops because of the entraining motion of the moving surface; when p = 1 the pressure is zero at the 
left edge of the beam, but if p 2 2 it falls below the external pressure at every point. 

According to (24), the total normal force Y at p 24/3 changes sign and becomes negative, i.e. the 
beam is pressed onto the heated surface because of the low pressure region formed beneath it. 

Substituting the expressions for p and y* into the formula (24) for Y we find, after reduction, the 
relationship between Y and the rate of melting V: 

A plot of this relationship in variables 

is shown in Fig. 5; as the load is reduced, a solution exists down to values 

The problem as formulated has no solution for smaller Y values. Whtin the range Ymin < Y < 0 
there are two values of the rate of melting for each value of the force. However, the solution for 

’ v/u 

I/ 
d b\ 

\ 
\ 

\ 
\ 

\ 
\ \ 
0 as 

FIG. 5 
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smaller V (the dashed portion of the curve in Fig. 5) must be discarded, since it implies that as the 
load is increased the layer thickness y*, which is inversely proportional to V, also increases; while 
one would expect it to decrease. 

Looking at formulas (24) for X,,, and X*, we see that if the force Y is fixed and the velocity U 
increases, the friction at the wall X,,, will change sign at l3 = 314; instead of pulling, it begins to exert 
a retarding effect. The same happens to the force of friction X* at the beam, but at l3 = 312. This 
change is easily explained by the behaviour of the velocity profile of the melt at different sections of 
the layer, which is due in turn to the changes in the pressure distribution as l3 varies. 

We will now consider symmetric motion of a wedge “melting its way” through a medium (this 
problem was considered previously [5] by the method of integral relations). The origin of the system 
of coordinates is placed at the tip of the wedge, and it is assumed that the initial thickness of the melt 
layer at the tip is zero, i.e. we are assuming that the distance &of the melting front ahead of the tip 
is of the order of h(T,,,- T,,,)(p,Vhf)-‘, which is negligibly small compared with the length L of the 
wedge wall (see [l]). 

The shape of the melting front is described by the second expression of (21) with ya* = 0 and is 
represented by the lower curve in Fig. 2. 

As x increases without limit, the thickness of the melt layer will tend to a constant y,* ; hence the 
rate of melting must also increase without limit. It can be shown that as x-+ 03, 

u,,,--~/$V sin yx 

Using expression (17) for k0 with x0 = yo* = 0 and U = 0, as well as the relationship between k. 
and dpldx, again with p = 0 at x = L, we obtain the following formula for the pressure distribution 

(acsk-; 
PJW cos* Y [p(t) 

= I (T,,-T,) - 
p (El,)] 

’ WN--1h+ 12% (g 

v 9 

E L==tgy 
+ 

e ) YL-0 I 

Figure 6 plots the function p (6) for several N values. It is readily seen that at 5 = 0 and N = %, the 
pressure has a logarithmic singularity (a-+ 6 (2N- l)ln[), while at large 5 values (when -q-+ 1) 
+ --cQ as -6NE2. 

Integrating (25), we obtain the total normal pressure force acting on a length L of the side of the 
wedge: 

The frictional force acting along a length L of the side of the wedge is 

-100 0 
1 2 5 

FIG. 6. 
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In the approximation adopted above, 

The quantities @ and T are plotted against 6,) for N = 1, in Fig. 6. 
We will now consider the qualitative behaviour of the melt layer in the con~guration shown in 

Fig. 7: upstream of the wedge lies a heated length of waI1, AU parallel to the direction of the moving 
solid medium. Since the thickness of the melt layer increases along this wall [see (20)] as the square 
root of the distance from its initial point, the layer thickness yO* at the angle in the wall may be 
smaller or greater than the limiting thickness ysy of the layer over the wedge. Whether the thickness 
will increase or decrease beyond that point will depend on the second relation in formula (21) for y*. 

Of course, an examination of the melt flow near the angle in the wall no longer falls within the 
range of applicability of thin-layer theory. Nevertheless, as an approximation, the solutions for the 
two parts of the layer that meet at the angle may be combined on the assumption that the melt 
discharge, layer thickness and pressure are continuous across the cross-section OC (see Fig. 7, 
which corresponds to the case ye* > y, *). 

It is more difficult to investigate flows allowing for the conduction of heat due to viscous 
dissipation. We again consider the problem of the formation of a melt layer between a moving plane 
(plate) and a melting medium pressed onto it. Two cases will be considered separately: a thermally 
insulated plate, when all the heat necessary to melt the medium is generated by viscous dissipation 
in the layer; and a plate of given temperature. 

In the first case it follows from the second expression of (14), via the condition T”(0) = 0, that 

The conditions of mass balance (17) and heat balance (18) are 

k ,=-6U f 12NV 7 

koP 
-P i2 ( + up) + pdVQ* = 6 

(251 

(26) 

Thus, y* is expressed as a function of x-x0 parametrically, in terms of k~; y* is a quadratic 
polynomial and x -x0 is a cubic polynomial in ko . 

Introducing new variables 

NJ* x = i2A’p,Vhf ” ’ 
*=.mi$ k Phf - 

P,Vhf 
,=IJB, ~=-~p 

we express these functions as 

(27) 

The pressure distribution (apart from a constant) and wall temperature are 
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Figure 8 illustrates the behaviour of the melt layer thickness ,’ and pressure gradient k in 
dimensionless variables. The layer thickness first decreases, falling at f = & + 6 to a minimum value 

Y’. mln = pU2/(pS Vhf), and then increases again. The quantity k increases monotonically as X increases 
and vanishes at R = _I?” + 6, i.e. where the layer thickness is a minimum; the pressure reaches a 
maximum in that cross-section. 

Plots of pressure and temperature, in dimensionless variables, are given in Fig. 9. 
The wall temperature first falls monotonically, reaching a minimum below the cross-section with 

the least layer thickness, and then increases again. We note that at f-R0 = 16/3 the derivative 
dT/%r( w becomes infinite, so that, strictly speaking, the underlying assumption of thin-layer 
theory-the possibility of ignoring the heat flux in the longitudinal direction-fails near this 
cross-section. 

We now again apply the universal functions obtained above, to investigate melting of a beam of 
width L pressed onto a plate by a force Y. As before, we will have to determine the value of the 
parameter x0. To find the dependence of this parameter on the magnitude of the compressive force 
Y, as well as the rate of melting V, we have two equations: 

-20 d 20 5 -Jr, 

FIG. 9. 
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FIG. 10. 

Figure 10 illustrates the computed functions 

ZL % =. (12Np,h,L (l~!!~)-~)‘~ I/ and .x0/L versus Y = 121 (p&L)‘~ Y 

As an example of the use of these functions, Fig. 11 shows plots of the pressure 

and temperature for several ? values; the open circles on each curve correspond to the 
cross-sections x = x0. 

Suppose now that the temperature of the plate is constant and given at T, (> T,). Then the mass 
balance condition [the second equation in (291 at the solid-liquid interface remains the same, but 
the heat balance condition [the second relationship of (291, by (18), must be replaced as follows: 

Introducing the same dimensionless variables (27), we reduce the defining relations to the form 

j=x-l- &+ ( 
++ -+), z-q,=(k + 6)1,, x= ‘.‘$?” 

Thus, unlike the previous case, the defining relations involve a prescribed parameter x. 
Figure 12(a) plots y* against x --x0 for several x values. The layer thickness decreases as 5 

increases, down to a value jjmin = x + 95 and E = 4(x + l/3), and then again increases. 

au 
FIG. 11. 
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The quantity k increases with 5, passing through zero at 5 = 6(x + Y2). Plots of k(t) are shown in 
Fig. 12(b). Accordingly, the pressure first increases, reaching a maximum at 5 = 6(x + %), and then 
again decreases; pressure curves are shown in Fig. 12(c). 

The heat flux to the plate is given by 

A CJT 1 
qlD=--- =- 

I ( P,Y a 10 B -'+24 
"-*++ 

> 

Plots of this function for three characteristic values of x, in the ranges (0, %), (1/3, ?h) and 
(l/z, w), are shown in Fig. 12(d). It is clear that, if the difference T, - T,( x < l/3) is not too large, 
the heat flux will be directed toward the plate (positive), i.e. the material will melt owing to heat 
generated by the dissipation of mechnical energy in the melt layer. As T,- T,,, increases, an 
increasingly large part of the plate will supply heat to the flow, and at a certain point the whole 
surface beneath the beam will become a source of heat. 

To determine the rate of melting V and the fraction of the melt forced out from beneath the beam 
in different directions, i.e. the quantity x0, as functions of the force exerted on the beam, one uses 
the same formulas as for a thermally insulated plate. 

In conclusion, we consider the melt layer formed when a circular cylinder moves at right angles to 
its generator in a melting solid medium. The spherical analogue of this problem was recently 
considered in the Stokes approximation, ignoring viscous dissipation [5]. 

In this case (see Fig. 13), y = n/2 -x/R, where R is the radius of the cylinder and x is the distance 
along the circumference from the leading point. Formulas (15) then become (again neglecting heat 
transferred to the solid medium) 

The initial conditions for the solution of this system will be 
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FIG. 13 

We introduce dimensionless variables, indicated by bars: 

System (28) with the initial conditions (29) becomes 

[ 
(1--%N)sini+$t3~+(c*s~+,~~)~-2Ncosi 

al - -$+fi($-+ Z& ++P)=(cosz+sin~TE;)y 

(29) 

(30) 

This system contains, besides N, two parameters: 

e-y@? and ji-pV(p,I@)-* 

Once Y(R) and k(x) have been determined from system (30), integration of the equation 
(I-‘dpldx = -k/y*’ gives the pressure distribution, and integration of the components of the excess 
force of pressure and the frictional force in the direction of motion yield the resistance of the 
forward surface of the cylinder: 

nR/s 
n’o x=2 

s 
[T cos y + (p - pd) sin y] dx - 2pb’ 

SE 
(sin 2 + &2) sin r _. 

5 
. 7 

0 

Results of computations carried out with TV = 0 and N = 1 and various values of the parameter 
E = X( T, - T,)(p, vhfR)-’ are shown in Figs 14 and 15. 

Figure 14 shows the shape of the melt layer surface; the dashed curve represents the surface of the 
cylinder, curves 14 correspond to values of E X lo3 = 5,10,25 and 50. Figure 15(a) shows plots of k 
illustrating the behaviour of the pressure gradient along the cylinder surface (with opposite sign); 
Figs 15(b and c) illustrate the distribution of excess pressure p -pd = pV(~~l?)-‘p and surface 
friction r = pV(cR)-I,?.. Finally, the dots in Fig. 16 represent values of the resistance of the forward 
part of the cylinder, X= ~~VE-~X(E), and the total heat flux from it to the melting medium, 
Q = 2p, VhiRQ (E). 

The author is indebted to M. Slavinskii, who carried out the computations and prepared the 
figures. 
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